23 research outputs found

    Choline PET and PET/CT in Primary Diagnosis and Staging of Prostate Cancer

    Get PDF
    PET and PET/CT using [11C]- and [18F]-labelled choline derivates is increasingly being used for imaging of primary and recurrent prostate cancer. While PET and PET/CT with [11C]- and [18F]-labelled choline derivates in patients suffering from biochemical recurrence of prostate cancer has been examined in many studies that demonstrate an increasing importance, its role in the primary staging of prostate cancer is still a matter of debate

    A Comparison of Airborne In Situ Cloud Microphysical Measurement with Ground-Based C-Band Radar Observations in Deep Stratiform Regions of African Squall Lines

    Get PDF
    This study addresses clouds with significant ice water content (IWC) in the stratiform regions downwind of the convective cores of African squall lines in the framework of the French–Indian satellite Megha-Tropiques project, observed in August 2010 next to Niamey (13.5°N, 2°E) in the southwestern part of Niger. The objectives included comparing the IWC–Z reflectivity relationship for precipitation radars in deep stratiform anvils, collocating reflectivity observed from ground radar with the calculated reflectivity from in situ microphysics for all aircraft locations inside the radar range, and interpreting the role of large ice crystals in the reflectivity of centimeter radars through analysis of their microphysical characteristics as ice crystals larger than 5 mm frequently occurred. It was found that, in the range of 20–30 dBZ, IWC and C-band reflectivity are not really correlated. Cloud regions with high IWC caused by important crystal number concentrations can lead to the same reflectivity factor as cloud regions with low IWC formed by a few millimeter-sized ice crystals

    Remote biomass burning dominates southern West African air pollution during the monsoon

    Get PDF
    Vast quantities of agricultural land in southern and central Africa are burnt between June and September each year, which releases large concentrations of aerosols into the atmosphere. The resulting smoke plumes are carried west over the Atlantic Ocean at altitudes between 2 and 4 km. As only limited observational data in West Africa have existed until now, whether this pollution has an impact at lower altitudes has remained unclear. The Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) aircraft campaign took place in southern West Africa during June and July 2016, with the aim of observing gas and aerosol properties in the region in order to assess anthropogenic and other influences on the atmosphere. Results presented here show that a significant mass of aged accumulation mode aerosol was present in the southern West African boundary layer, over both the ocean and the continent. A median dry aerosol concentration of 6.2 ”g m−3 (standard temperature and pressure (STP)) was observed over the Atlantic Ocean upwind of the major cities, with an interquartile range from 5.3 to 8.0 ”g m−3. This concentration increased to a median of 11.1 ”g m−3 (8.6 to 15.7 ”g m−3) in the immediate outflow from cities. In the continental air mass away from the cities, the median aerosol loading was 7.5 ”g m−3, with an interquartile range of 4.2 ”g m−3. The accumulation mode aerosol population over land displayed similar chemical properties to the upstream population, which implies that upstream aerosol is a significant source of aerosol pollution over the continent. The upstream aerosol is found to have most likely originated from central and southern African biomass burning. This demonstrates that biomass burning plumes are being advected northwards, after being entrained into the monsoon layer over the eastern tropical Atlantic Ocean. It is shown observationally for the first time that they contribute up to 80 % to the regional aerosol loading in the boundary layer of southern West Africa during the monsoon season. As a result, the large and growing emissions from the coastal cities are overlaid on an already substantial aerosol background. On a regional scale this renders cloud properties and precipitation less sensitive to future increases in anthropogenic emissions. Such high background loadings will lead to greater pollution exposure for the large and growing population in southern West Africa. These results emphasise the importance of including aerosol from across country borders in the development of air pollution policies and interventions in regions such as West Africa

    External radiation exposure, excretion, and effective half-life in 177Lu-PSMA-targeted therapies

    No full text
    Abstract Background Prostate-specific membrane antigen (PSMA)-targeted therapy with 177Lu-PSMA-617 is a therapeutic option for patients with metastatic castration-resistant prostate cancer (mCRPC). To optimize the therapy procedure, it is necessary to determine relevant parameters to define radiation protection and safety necessities. Therefore, this study aimed at estimating the ambient radiation exposure received by the patient. Moreover, the excreted activity was quantified. Results In total, 50 patients with mCRPC and treated with 177Lu-PSMA-617 (mean administered activity 6.3 ± 0.5 GBq) were retrospectively included in a bi-centric study. Whole-body dose rates were measured at a distance of 2 m at various time points after application of 177Lu-PSMA-617, and effective half-lives for different time points were calculated and compared. Radiation exposure to the public was approximated using the dose integral. For the estimation of the excreted activity, whole body measurements of 25 patients were performed at 7 time points. Unbound 177Lu-PSMA-617 was rapidly cleared from the body. After 4 h, approximately 50% and, after 12 h, approximately 70% of the administered activity were excreted, primarily via urine. The mean dose rates were the following: 3.6 ± 0.7 ΌSv/h at 2 h p. i., 1.6 ± 0.6 ΌSv/h at 24 h, 1.1 ± 0.5 ΌSv/h at 48 h, and 0.7 ± 0.4 ΌSv/h at 72 h. The mean effective half-life of the cohort was 40.5 ± 9.6 h (min 21.7 h; max 85.7 h). The maximum dose to individual members of the public per treatment cycle was ~ 250 ± 55 ΌSv when the patient was discharged from the clinic after 48 h and ~ 190 ± 36 ΌSv when the patient was discharged after 72 h. Conclusions In terms of the radiation exposure to the public, 177Lu-PSMA is a safe option of radionuclide therapy. As usually four (sometimes more) cycles of the therapy are performed, it must be conducted in a way that ensures that applicable legal requirements can be followed. In other words, the radiation exposure to the public and the concentration of activity in wastewater must be sub-marginal. Therefore, in certain countries, hospitalization of these patients is mandatory

    Multimodality multiparametric imaging of early tumor response to a novel antiangiogenic therapy based on anticalins.

    No full text
    Anticalins are a novel class of targeted protein therapeutics. The PEGylated Anticalin Angiocal (PRS-050-PEG40) is directed against VEGF-A. The purpose of our study was to compare the performance of diffusion weighted imaging (DWI), dynamic contrast enhanced magnetic resonance imaging (DCE)-MRI and positron emission tomography with the tracer [18F]fluorodeoxyglucose (FDG-PET) for monitoring early response to antiangiogenic therapy with PRS-050-PEG40. 31 mice were implanted subcutaneously with A673 rhabdomyosarcoma xenografts and underwent DWI, DCE-MRI and FDG-PET before and 2 days after i.p. injection of PRS-050-PEG40 (n = 13), Avastin (n = 6) or PBS (n = 12). Tumor size was measured manually with a caliper. Imaging results were correlated with histopathology. In the results, the tumor size was not significantly different in the treatment groups when compared to the control group on day 2 after therapy onset (P = 0.09). In contrast the imaging modalities DWI, DCE-MRI and FDG-PET showed significant differences between the therapeutic compared to the control group as early as 2 days after therapy onset (P<0.001). There was a strong correlation of the early changes in DWI, DCE-MRI and FDG-PET at day 2 after therapy onset and the change in tumor size at the end of therapy (r = -0.58, 0.71 and 0.67 respectively). The imaging results were confirmed by histopathology, showing early necrosis and necroptosis in the tumors. Thus multimodality multiparametric imaging was able to predict therapeutic success of PRS-050-PEG40 and Avastin as early as 2 days after onset of therapy and thus promising for monitoring early response of antiangiogenic therapy
    corecore